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Scaling laws for pipe-flow turbulence 
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(Received 7 August 1973 and in revised form 23 May 1974) 

Using hot-wire-anemometer dynamic-calibration methods, fully developed 
pipe-flow turbulence measurements have been taken in the Reynolds-number 
range 80 x lo3 to 260 x lo3. Comparisons are made with the results of previous 
workers, obtained using static-calibration methods. From the dynamic-calibra- 
tion results, a consistent and systematic correlation for the distribution of 
turbulence quantities becomes evident, the resulting correlation scheme being 
similar to that which has previously been established for the mean flow. The 
correlations reported have been partly conjectured in the past by many workers 
but convincing experimental evidence has always been masked by the scatter 
in the results, no doubt caused by the difficulties associated with static-calibra- 
tion methods, particularly the earlier ones. As for the mean flow, the turbulence 
intensity measurements appear to collapse to an inner and outer law with a 
region of overlap, from which deductioiis can be made using dimensional argu- 
ments. The long-suspected similarity of the turbulence structure and its con- 
sistency with the established mean-flow similarity appears to be confirmed by 
the measurements reported here. 

1. Introduction 
The axisymmetric fully developed flow of air in a pipe provides one of the 

simplest and most reproducible laboratory flows for experimental wall-turbu- 
Ience studies. However, all turbulence-structure hypotheses developed to date 
have relied upon experimental results which show considerable inconsistencies. 
For example, the studies of Laufer (1954), Morrison & Kronauer (1968), Townes 
et al. (1971) and Lawn (1971) show differences in the reported r.m.s. turbulence 
level of up to 25 % . 

The authors feel that the inconsistencies shown in previous data are due to 
several factors, including an insufficient flow development length, ill-conditioned 
hot-wire-anemometer calibration methods, inaccuracy in wall-distance measupe- 
ments, failure to observe the wire filament and its position while measurements 
are being taken, and difficulties associated with the accurate alignment of hot- 
wire probes. The present work was undertaken with the aim of minimizing 
errors due to the above factors to obtain consistent pipe-flow turbulence data. 

t Present address : Engineering Department, University of Cambridge. 
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FIGURE 1. Apparatus. D is internal diameter. 

2. Experimental methods and apparatus 
All results were obtained in the apparatus shown diagramatically in figure 1. 

The pipe used was precision-drawn brass tubing of diameter 11-1  cm and 10 m 
long. The inlet contraction was fitted with an hexagonal honeycomb of cell 
width-to-length ratio 7 and cell size 9.5 mm. The four screens shown are of gauges 
24, 25, 26 and 28 respectively in the streamwise direction. A sandpaper trip was 
used after the contraction to stabilize the flow transition. 

The measurements reported here were taken at stations 71.9 and 86.7 dia- 
meters from the pipe entrance. 

2.1. Mean-$ow characteristics 

All mean-flow profiles were measured using traversing total-head tubes and 
wall sta,tic-pressure tappings. This method is more direct and accurate than hot- 
wire techniques when using udinearized anemometers and avoids the need for 
repeated calibrations. The mean profiles are shown in figure 2 in the form of a 
velocity defect (U,- U)/u,, where U, is the centre-line velocity, U the local 
mean velocity and u, the shear velocity. The velocity defect shows good collapse 
with no systematic Reynolds-number variation away from the wall. 

The shear velocity u, was estimated from a Clauser chart (Clauser 1954) using 
the logarithmic law proposed by Coles (1968): 

U/u, = (0.41)-11ny++5-0, (1)  

where y f  = yu,/v, y is the wall distance and Y the kinematic viscosity. Combining 
(1) with the velocity defect law leads to the more general form 

U/u, = (0*41)-lln y++5*0+h[y/R] ( 2 )  

for yf > I00 and y / R  < 1 (where R is the pipe radius). 
Ferriss (1965) has shown that sIight tapers in the duct cross-section have a 

marked influence on pressure-drop measurements, and hence on the inferred 
values of u,. Nevertheless, values of u, deduced from pressure-drop measurements 
agreed with Clauser-chart values to within 3 %. 

Figure 3 shows typical mean-flow results compared with (1) .  Values of u,/Ul 
were interpolated where necessary from the skin-friction law given by ( 2 )  with 
y = R and with the measured value of the centre-line ‘deviation’ h [ l ] .  
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The existence of fully developed flow was ensured by comparing local mean 
velocity profiles and r.m.s. longitudinal turbulence measurements u’ a t  the two 
measuring stations. The flow was also checkzd for a possible lack of axisymmetry 
caused by entry conditions by measuring u’ a t  fixed radii and rotating the en- 
trance assembly relative to the pipe. The flow was found to be axisymmetric 
and fully developed at and beyond 71-9 diameters downstream up to a Reynolds 
number of 350 x lo3 based on the pipe diameter and centre-line velocity. 

N 

2.2 .  Turbulence measurements 

Unlinearized constant-temperature anemometer equipment was used through- 
out, the design being similar to  that described in Perry & Morrison (1971a). 
For longitudinal turbulence measurements, DISA 55 F14 probes were used with 
the authors’ filaments, consisting of 4 pm diameter platinum wires (Wollaston 
type). Typical etched lengths were 1-2-1-5 mm. Measurements of Reynolds 
stress and transverse turbulence were taken using DISA 55 A38 cross-wire 
probes with the manufacturers’ 5,um diameter tungsten wires, 1.2 mm long. 

Dynamic-calibration methods were used for all turbulence intensity and cor- 
relation measurements. 

For normal wires, the small-perturbation sensitivity s = e’/u’ (where e’ is the 
r.m.s. voltage perturbation anemometer output) was measured directly by 
oscillating the probe sinusoidally in a steady flow. This enabled the velocity 
sensitivity of the entire hot-wire system from probe filament to DVM output 
to be obtained without recourse to any heat-transfer law, curve fitting or numeri- 
cal differentiation methods. 

Cross-wire probes were calibrated by subjecting the probe to both longi- 
tudinal and transverse velocity perturbations in turn. Using this technique, no 
assumptions regarding wire angles or matching of the two wires of the probe and 
their respective anemometer channels were required. All calibration and signal 
processing was accomplished using EAI TR20 and TR48 analog computers, all 
fitted with TR 48 amplifiers. The dynamic-calibration methods are described 
in detail by Perry & Morrison (1971 b )  and Morrison, Perry & Samuel (1972). 

The possibility of hot-wire calibration drift due to  wire ageing and contamina- 
tion meant that  all wires had to be calibrated both before and after use to check 
for constant characteristics. If the two calibrations ofa  given wire failed to agree 
in sensitivity to within better than 2 % then the data obtained using that wire 
were rejected. 

The anemometer frequency response was checked and adjusted using square- 
wave injection to ensure a quadratic pole of optimum damping a t  or beyond 
20 kHz for all measurements. 

Since the operating point of the anemometer was defined by the mean output 
voltage E the results were corrected where necessary for changes in the ambient 
temperature 0 between calibration and measurement using the partial derivative 
[s-1as/a0lE, calculated from the heat-transfer law of Grant & Kronauer (1962). 
Typical temperature corrections were of the order of 2 yo. 

Energy spectra of the longitudinal component of turbulence were measured 

N N  N 
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FIGURE 4. Comparison of ‘ outer flow’ longitudinal turbulence data with results of some 
earlier workers. - , mean curve fitted to data of figure 6, 78 x lo3 < Re < 257 x lo3; 
I, Lawn, 38 x lo3 C Re G 250 x lo3; 0, Morrison & Kronauer, 34 x lo3 < Re < 193 x lo3; 
0, Laufer, Re = 500 x lo3; 0, Laufer, Re = 50 x lo3. 

using two Krohn-Hite filters (model 3321), compounded to give a bandpass of 
approximately one third of an octave. For spectral measurements, wires of active 
length 1-2-1.3 mm were used. 

2.3. Wall-distance measurement 

To obtain wall-distance estimates of sufficient accuracy, a short-focusing tele- 
scope was used to give successive readings of the separation of the wire and its 
image in the polished wall for various transverse positions (measured on a micro- 
meter head). Since the active sections of hot wires bow owing to thermal expan- 
sion, a telescope of sufficient magnification to view the etched section of the 
wire and its image had to be used. Using this method, 95% confidence limits 
gave an uncerta,inty in wall distance of typically 5 0.04 mni. 

3. Experimental measurements 
3.1. Longitudinal turbulence 

The root-mean-square longitudinal turbulence u’ was measured a t  four Reynolds 
numbers ranging from 78 x lo3 to 257 x lo3. Owing to  wall proximity effects 
(see Wills 1962), measurements were not taken closer than 0 4 m m  or 80 wire 
diameters from the wall. This represents y+ values of 12 for the lowest Reynolds 
number and 35 for the highest. The data are presented in figures 4-7. Figures 4 
and 5 compare the data reported here with those of some previous workers. 

N 
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FIGURE 5 .  Comparison of ‘inner flow’ longitudinal turbulence data with results of some 
earlier workers. __ , mean curve fitted to data of figure 7; 3 ,  Morrison & Kronauer, 
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FIGURE 7. Longitudinal turbulence data. Symbols as for figure 6 .  

The 'outer flow' data presented in figure 6 show a good collapse of the turbu- 
lence level u'/u, for all the Reynolds numbers examined for y/R > 0.1, as sug- 
gested by Townsend's (1956, p. 89) hypothesis of Reynolds-number similarity 
of the outer flow. The inset in figure 6 shows that for y/R < 0.1 the data have no 
tendency to collapse as a function of non-dimensional wall distance y/R.  However, 
as seen from figure 7, the same data close to the wall correlate well as u'/u, vs. yf 
for y/R < 0.1, indicating the existence of an inner-region scaling with inner- 
flow variables. An important consequence of plotting the data this way is that 
distinct regions of constant turbulence level u'/u, appear. Regions of constant 
u'/u, are consistent with an overlap of inner and outer laws. If a function fo[y/R]t 
describing the outer flow is to extend over a region where the turbulence is also 
described by u'/u, = fi[y+], then u'/u, must be a universal constant, since the 
arguments yf and y/R are arbitrarily independent variables. Further, it is en- 
lightening to show the mean-flow profiles on the same graph as the turbulence 
data, as in figure 8, where all data are shown as faired curves. The spatial extent 
h of constant turbulence level and logarithmic mean flow are seen to correspond 
well. 

The data presented in figures 6 and 7 have not been corrected for the effect 
of finite wire length, but corrections to the r.m.s. longitudinal turbulence broad- 
band measurements based on measured spectra using the method of Wyngaard 
(1968) are less than 3 % a t  yf = 100, decreasing to 1 yo for y/R > 0.2. 

N 

ICI 

N 

N 

N N 

t Throughout this paper, square brackets indicate a functional dependence. 
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FIGURE 8. Spatial comparison between regions of constant longitudinal turbulence 

level and logarithmic mean flow for Re = 78 x lo3 and 257 x lo3. 

3.2. Transverse turbulence a d  Reynolds stress 
N 

Measurements of the r.m.s. transverse turbulence v' and kinematic Reynolds 
stress --a were taken at. Reynolds numbers of 100 x lo3 and 200 x lo3, using 
cross-wire probes. Results obtained using cross-wire probes are subject to several 
sources of error. First, approximately 2.5 yo and 5 yo errors in deduced values of 

and UI'UI respect'ively result from a rotation of the probe of lo about the 
normal to the plane of the crossed wires, relative to  a mean streamline (pitch- 
angle variation). Second, movement of the hot-wire filament causes a considerable 
change in the effective angle of the wire to the mean flow, and hence a large 
change in velocity sensitivity. When a wire is bowed by thermal expansion, 
lateral aerodynamic forces can cause the bowing to move (Perry & Morrison 
1971 c). If there is any plastic bending in the filament, this deflexion will have a 
hysteresis. That is, as t,he wire is unloaded, its movement may not be reversible. 
The authors have on many occasions observed two distinct calibration curves 
for the same inclined wire, each corresponding to a different position of the wire 
filament. Hence it would appear that for cross-wire measurements in situations 
where it is not possible to  check the probe pitch angle directly, or monitor 
the wire filament position, dynamic-calibration methods are as unreliable as 
static-calibration methods./A further source of error for inclined wires arises from 
slight inaccuracies in the analog computer scaling used to convert the voltage 
signals to velocity correlations. This source is always present irrespective of the 
calibration method and reflects the ill-conditioned nature of the inclined-wire 
equations being used in the signal processing. 
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FIGURE 9. Cross-wire measurements. Q, Re = 100 x los, u,/U, = 0-0402; 
0, Re = 200 x lo3, uJU,  = 0.0387; 1 , Lawn, 38 x lo3 < Re < 250 x 103. 

Figure 9 shows the data obtained for the correlation -UIz)ilu~, transverse 
turbulence v’/u7 and correlation coefficient - u’v’/u’v’, together with the data of 
Lawn. The data have not been corrected for finite wire length. 

The error in the u‘/wr results obtained using cross-wire probes compared with 
those obtained using normal wires (5 3.1) is of the same order ( k 5 %) as the dif- 
ference between the v‘/u, results at  the two Reynolds numbers. Taking this into 
account, Reynolds-number similarity of the outer flow for transverse turbulence 
would seem pIausibIe. This is also supported by the small variation of the cor- 
relation coefficient and the data of Lawn. 

N - N N  

N 

N 

3.3. Energy spectra of longitudinal turbulence 

@[w’,xl,xz, ...I and $[or, x1,x2, ...I 
The following definitions for the spectrum functions will be used: 

are chosen so that @[a‘, xl, x2,  . . .] dw‘ = (z)2[xl,x2, ... I (3) 
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and 

Also 

and 

$[wf ,x1 ,x2 ,  ...I dw' = 1. 

Y[wf,x1,x2, ...I = w f @ [ w , x 1 , x 2 ,  ...I 
$[d, x,, x2, ...I = wf$[w' ,x l ,  x2, . . . I .  

(4) 

The functions Y and $ are more convenient in form from an experimental 
viewpoint since constant-percentage bandwidth filters have been used. The vari- 
able w' is a non-dimensional circular frequency to be chosen differently in the 
inner and outer regions (see below), and xl, x2, etc., are further non-dimensional 
parameters. 

In  the viscosity-dependent region close to the boundary, it is proposed that 

a) = @[wv/u;, yu,/v]. (7) 

This is consistent with the 'law of the wall' philosophy in that, as for the mean 
flow and the broad-band turbulence distributions close t o  the boundary, outer- 
flow variables R and U, are not the pertinent scales. Note that here w' = wv/u;. 

For the outer flow, if the observer were moving with a velocity U,, then to 
be consistent with the hypothesis of Reynolds-number similarity, 

= @[wy/u,,y/RI.  (8)  

That is,neither the viscosity nor thevelocityof the observer relative t o  the bound- 
ary enters the problem explicitly. However, since the observer is stationary, an 
additional parameter is necessary to  account for the convection of the turbulence 
structure past the observer. Hence, for the outer flow, three parameters are 
required, and it will be seen later that it is convenient to use the following: 

Q = Q[@Y/U, Y l R ,  Ul/%I, (9) 

i.e. w f  = wy/U for the outer spectra. Of course, a t  very high wavenumbers, these 
similarity arguments must break down, since viscous effects become important. 
However, this does not detract from the validity of (7) and (9) concerning the 
energy-containing motions. 

Longitudinal turbulence spectra were measured for varying wall distance 
a t  Reynolds numbers of SO x lo3, 120 x lo3, 180 x lo3 and 260 x 103. Representa- 
tive spectra are shown in figure SO(a) as $ us. w y / U  for varying wall distance 
y / R .  It is seen that the data plotted in this form are independent of Reynolds 
number for y+ > 100. Closer to the wall (corresponding to y+ < 100) the spectral 
shapes are dissimilar for different Reynolds numbers, when plotted as y? us. 
w y / U ,  as seen in figure SO(b) .  

Further, a region where the spectrum function $ us. wy/U does not change 
with wall distance appears for y / R  < 0-1 and y+ > 100. This corresponds to the 
region of overlap. Spectral measurements taken within the overlap region 
y f  > 100, y / R  < 0.1 are shown in figure 11 (a )  plotted as Y us. wy/U All the data 
obtained within this region comprise I0 spectra a t  9 values of y f  a t  four Reynolds 
numbers. Figure 11 ( b )  shows the same data plotted as Y us. my/.,". Although 
marginal, a comparison of the two figures indicates that the more pertinent 
non-dimensional parameter is probably wy/U,  That is, within this region, 
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FIGURE 12. Spectrum function W(lcy, cfu,). The arrow shows the translation of W(ky ,  c/uT) 
contour for increasing Reynolds number and/or increasing y+ within the region of overlap. 
Q is a universal constant representing the non-dimensional spread of the phase velocity 
associated with the contour shown. 

Y = Y [ w y / U ] ,  approximately a universal spectrum function. It is conjectured 
by the authors in what follows that a more precise universality of the spectrum 
function would occur in the region of overlap if wavenumberfphase-velocity 
concepts were used. 

The scaling of frequency with wall distance and local mean velocity to give a 
universal function within this region of overlap can be deduced from dimen- 
sional arguments. Within the region of constant u’/u7, it  can be seen from the 
previous results that the length scales v/u7 and R do not control the characteristic 
scale of the energy-containing components. The only length scale remaining is 
the wall distance y. Also, the representation of the spectrum of the energy- 
containing turbulence in the wavenumber (k), phase velocity (c) plane within this 
region has a spread of phase velocities scaling with u, (see figure 12). This is 
consistent with the Townsend hypothesis of Reynolds-number similarity for the 
outer flow: all mean relative motions and energy-containing turbulence motions 
have one characteristic velocity scale, namely u,. It can be shown from the 
relationship between the space-time correlation and its Fourier transform 
expressed in terms of phase velocity and wavenumber 

N 

W[k,  c] = (2n)-Z //I --m R[S, ~]exp(ik(8--c~)}d&d~ (10) 
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FIGURE 13. Longitudinal turbulence spectra. yf = 50. 
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(see Wills 1964) that, if &, is the spectrum seen by an observer moving with 
velocity V ,  and W, the spectrum seen by a stationary observer, 

& q c ,  c] = W,[lc, c - V ] .  (11)  

This means that the contours of W [ k ,  c] shown in figure 12 translate without dis- 
tortion for change of the velocity of the observer relative to the turbulent field. 
Higher-Reynolds-number flow hence leads to a reduced fractional spread Ac/U 
of phase velocities as seen by a stationary observer, and Taylor’s hypothesis of a 
frozen convected turbulence structure becomes more accurate, since within the 
region where most of the energy is located (shown shaded in figure 12), the hyper- 
bolic contours corresponding to constant frequency w become more closely 
contours of constant wavenumber k,  with w = k U .  At lower Reynolds numbers 
this approximation breaks down and this could partially explain the scatter in 
figure 11 (a).  

The spectral correlation shown in figure 11 (a)  has been suggested previously 
by other workers, for example, Morrison & Kronauer (1968). 

Figure 13 shows typical data obtained for yf < I00 plotted as Y us. wv/u$ 
for a yf value of 50. The small variation between results at  different Reynolds 
numbers is encouraging since the spectral shape is strongly dependent on wall 
distance close to the wall. The results suggest that Y = Y [wv/u:, yu,/v] as anti- 
cipated earlier from the ‘law of the wall ’ philosophy. 

For the detailed results obtained in the outer flow, refer to figure lO(a). 
The spectra show good agreement between results for different Reynolds numbers 
at  the same y/R, indicating that the Reynolds number has a relatively minor 
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effect on the spectrum function. The reason for this could be that the fractional 
spread of phase velocities is small. In  any case, U,/u7 is a weak function of Rey- 
nolds number. 

4. Discussion and conclusions 
It has been shown here that by using the hot-wire-anemometer dynamic- 

calibration techniques of Perry & Morrison (1971 a), a consistent correlation for 
pipe-flow turbulence structure becomes apparent. The longitudinal turbulence, 
like the mean-flow velocity, follows an inner flow/outer flow law with a corre- 
sponding region of overlap. From the form of the inner and outer regions, the 
overlap can be predicted as a region of constant and universal value of u'/u7. 
This agrees with measurements in the wall-distance range yf > 100, y/R < 0.1. 

Transverse turbulence results indicate that an outer-flow behaviour similar 
to that observed for the longitudinal turbulence is plausible. 

Also, from the inner and outer flow structure of the turbulence, certain proper- 
ties relating to the spectra can be deduced. The most important of these is that, in 
the region of constant z/u7 at the Reynolds numbers measured, the charac- 
teristic wavenumber scales with the wall distance and Taylor's hypothesis 
becomes more accurate with increased Reynolds number. 

The location by broad-band measurements of the critical regions for which 
spectra should be measured has helped to rationalize spectral correlations. I n  
the past, too few spectra have been taken in the zone y+ > 100, y/R < 0.1 and 
spectra measured outside this region were being compared to those measured 
within the region, leading to considerable confusion as to which parameters were 
controlling the flow. 

N 
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